
4 Balance Laws in Continuum Mechanics

4.1 Balance of Mass

Let φ : Ω× [0, T ]→ R3 be a motion and ρ0(X) be the density in the initial configuration
Ω (at time t=0). Let ρ(x, t) for x ∈ Ωt be the density in the configuration at time t.

Now let Bt = φ(B, t) be a sub-body of Ωt. Then, by the change of variables formula, we
have:

mass in Bt =

∫
Bt

ρ(x, t) dVx =

∫
B
ρ(φ(X, t), t) detDφ(X, t) dVX .

By conservation of mass, this should equal
∫
B ρ0(X) dVX. Since B ⊂ Ω is arbitrary, it

follows from Theorem 3.1 that

ρ0(X) = ρ(φ(X, t), t) detDφ(X, t), ∀x ∈ Ω ⇐⇒ ρ(x, t)|x=φ(X,t) =
ρ0(X)

detDφ(X, t)

⇐⇒ ρ(x, t) =
ρ0(X)

detDφ(X, t)

∣∣∣∣
X=ψ(x,t)

, ∀x ∈ Ωt. (4.1)

where ψ(x, t) is the inverse of the map φ(X, t). The above is the balance of mass condition
expressed in material coordinates.



Remark 4.1 (Balance of mass condition in spatial coordinates). As noted in Remark 3.3,
we have balance (conservation) of mass if the density ρ(x, t) satisfies

d

dt

∫
Bt

ρ(x, t) dv = 0

for all sub-bodies Bt ⊂ Ωt. By the transport theorem and the localisation principle, it
follows that

D

Dt
ρ+ ρ(O · v) = 0 ⇐⇒ ∂

∂t
ρ(x, t) + O · (ρ(x, t)v(x, t)) = 0, (4.2)

which is the continuity equation.

The conservation of mass (4.1) can be used to give an alternative proof of version 2 of the
transport theorem (Theorem 3.4).

Example 4.2. [Alternative proof of version 2 of Transport Theorem]

Let φ(x, t) be a motion, φ : Ω × [0, T ] → R3, and let ρ0(X) be the density in the ini-
tial configuration and ρ(x, t) be the density for x ∈ Ωt (configuration at time t). If the
conservation of mass holds, then given any f(x, t) defined for x ∈ Ωt, we have:

d

dt

(∫
Bt

f(x, t)ρ(x, t) dVx

)
=

∫
Bt

(
D

Dt
f(x, t)

)
ρ(x, t) dVx

where B ⊂ Ω and Bt = φ(B, t).

Proof. Use (4.1) and the change of variables formula for multiple integrals.

4.2 Forces Acting on and within a Continuum

Internal Forces / Stresses

Let φ : Ω × [0, T ] → R3 be a motion, then the stress principle / hypothesis of Cauchy
/ Euler states that for any fixed t, there exists a vector field t : Ωt × S2 → R3 where
S2 = {x ∈ R3 : |x| = 1} such that for any y ∈ Ωt and for any smooth surface S̃ in Ωt

passing through y with unit normal n at y, the (internal) force per unit area at y exerted
by the material on one side of S̃ (the side into which n is pointing) on the material on the
other side is t(y,n). The vector field t is called the Cauchy stress vector.

Remark 4.3. We will prove in section 4.3 that it is a consequence of the stress principle of
Cauchy/Euler (i.e. that the Cauchy stress vector is given by t = (ti(x,n)) on any surface
through x with unit normal n) that there exists a cartesian tensor with components Tij(x)
called the Cauchy stress tensor T(x) such that the stress vector t can be expressed as

ti(x,n) = Tij(x)nj , (4.3)

which we write as
t(x,n) = T (x)n, ∀x ∈ Ω (4.4)

for all unit vectors n.



External Forces

External forces acting on a continuum body are of two kinds.

1. Body forces (e.g. gravity) provide a force per unit mass acting on the body. Other
examples include forces induced by electric/magnetic fields. The body force is de-
scribed by a vector field b(y, t), y ∈ Ωt, b(·, t) : Ωt → R3 which gives the force per
unit mass at the point y ∈ Ωt at the time t. The total body force at time t is:

∫
Ωt

b(y, t)ρ(y, t) dVy =

∫
Ω

b(φ(X, t), t)
ρ0(X)

det(Dφ(X, t))
det(Dφ(X, t)) dVX

=

∫
Ω

b(φ(X, t), t)ρ0(X) dVX

Gravity corresponds to b = −ge3 where g is the acceleration due to gravity.

2. External tractions are a force per unit area acting on the boundary ∂Ωt of the body
given by g(y, t) for y ∈ ∂Ωt. This gives rise to a total boundary force

∫
∂Ωt

g(y, t)dAy.

Example

g(y) = −pn(y) (push inwards on boundary), y ∈ ∂Ωt where n(y) is the outward unit
normal to ∂Ωt at y, corresponds to an externally imposed pressure of magnitude p > 0.

Balance Laws

The continuum within a volume B̃ is in equilibrium when the total force acting on it is
zero and the total moment of the forces is also zero. When it is not in equilibrium, the
rate of change of (linear) momentum equals the total applied force and the rate of change
of angular momentum equals the total moment of the applied forces.

• (Linear) Momentum: ∫
B̃
ρ(x, t)v(x, t) dVx

• Angular Momentum: ∫
B̃

x× v(x, t)ρ(x, t) dVx

Let b be the body force per unit mass acting on B̃ and t be the boundary traction per
unit area.

• Total Force: ∫
B̃

b(x, t)ρ(x, t) dVx +

∫
∂B̃

t(x, t) dAx

• Total Moment: ∫
B̃

x× b(x, t)ρ(x, t) dVx +

∫
∂B̃

x× t(x, t) dAx



Balance of Linear Momentum

For any B̃t ⊂ Ωt:

d

dt

(∫
B̃t

v(x, t)ρ(x, t) dVx

)
=

∫
B̃t

b(x, t)ρ(x, t) dVx +

∫
∂B̃t

t(x, t)dAx

and using Theorem 3.4 we obtain∫
B̃t

(
D

Dt
v(x, t)

)
ρ(x, t) dVx =

∫
B̃t

bρ dVx +

∫
∂B̃t

t dAx

⇐⇒
∫
B̃t

[(
D

Dt
v

)
− b

]
ρ dVx =

∫
∂B̃t

t dAx (4.5)

Balance of Angular Momentum

For any B̃t ⊂ Ωt:

d

dt

(∫
B̃t

x× v(x, t)ρ(x, t) dVx

)
=

∫
B̃t

x× b(x, t)ρ(x, t) dVx +

∫
∂B̃t

x× t(x, t) dAx

and using Theorem 3.4 we obtain∫
B̃t

[(
D

Dt
x× v(x, t)

)
+ x×

(
D

Dt
v(x, t)

)]
ρ(x, t) dVx =

∫
B̃t

x× bρ dVx +

∫
∂B̃t

x× t dAx

(4.6)

⇐⇒
∫
B̃t

x×
[(

D

Dt
v

)
− b

]
ρ dVx =

∫
∂B̃t

x× t dAx. (4.7)



4.3 The Cauchy Stress Tensor

In this section we work in spatial coordinates and for convenience/clarity we suppress
the time dependence. We will prove that it is a consequence of the stress principle of
Cauchy/Euler (i.e. that the Cauchy stress vector is given by t = (ti(x,n)) on any surface
through x with unit normal n) that there exists a cartesian tensor with components Tij(x)
called the Cauchy stress tensor T(x) such that the stress vector t can be expressed as

ti(x,n) = Tij(x)nj , (4.8)

which we write as
t(x,n) = T (x)n, ∀x ∈ Ω (4.9)

for all unit vectors n.

Let x0 ∈ Ω and ñ = (ñi) be a unit vector with ñi > 0. Define B̃ to be the right sided
tetrahedron with three sides S1, S2, S3 (each with outward unit normal −ei and area ∆i)
parallel to the coordinate hyperplanes xi = 0, with its right angled vertex at x0, and let ñ
be the outward unit normal to the fourth side of the tetrahedron, labelled S (of area ∆).
We next consider linearly scaling the tetrahedron B̃ about x0 by a factor ε > 0. Then we
have:

∫
∂B̃

t(x,n(x))dAx =

∫
S

t(x, ñ)dAx +

3∑
i=1

∫
Si

t(x,−ei)dAx

≈ t(x0, ñ)∆ +
3∑
i=1

t(x0,−ei)∆i for small ε > 0 (4.10)

Lemma

By the divergence theorem

0 =

∫
∂B̃

n(x)dAx = ñ∆− e1∆1 − e2∆2 − e3∆3

Hence, dotting with ei yields

∆i = (ñ · ei)∆ = ñi∆.



Applying the lemma to (4.10) and using (4.5) we obtain:

∆

[
t(x0, ñ) +

3∑
i=1

t(x0,−ei)ñi)

]
≈
∫
∂B̃

t dAx =

∫
B̃
ρ

[
Dv

Dt
− b

]
dVx

≈ f(x0) vol. B̃t, (4.11)

where f(x) = ρ
[
Dv
Dt − b

]
. Next note that

vol B̃

∆ → 0 as ε → 0 (note ∆ is proportional to

area ∂B̃). Hence dividing (4.11) by ∆ and letting ε→ 0 yields:

0 = t(x0, ñ) +

3∑
i=1

t(x0,−ei)ñi ⇐⇒ t(x0, ñ) = −
3∑
i=1

t(x0,−ei)ñi (∗∗)

Next note, by continuity, allowing ñ→ ei in (**) yields t(x0,−ei) = −t(x0, ei). Thus

t(x0, ñ) =

3∑
i=1

t(x0, ei)ñi.

Define Tij(x0) = ti(x0, ej), then

ti(x0, ñ) = Tij(x0)ñj ⇐⇒ t(x0, ñ) = T (x0)ñ. (4.12)

Note: Different choices of the signs of ñi are dealt with by minor modifications of the
above argument.

Example

Consider a planar surface with normal ei. Then tj = Tji on the surface.

In this case, Tii (no sum) is called a normal stress and Tij , i 6= j are called shear stresses
on the surface.

4.4 Equations of Motion

It follows from the balance of linear momentum and the properties of the Cauchy stress
tensor (4.9) that for any B̃t ⊂ Ωt, (4.5)∫

B̃t

ρ

[
Dvi
Dt
− b
]
dVx =

∫
∂B̃t

Tijnj dAx, ∀B̃t ⊂ Ωt

By the divergence theorem it now follows that:

∫
B̃t

ρ

[
Dvi
Dt
− bi

]
− ∂

∂xj
Tij dVx = 0, ∀B̃t ⊂ Ωt

By the localisation Theorem (3.1) it now follows that the integrand is zero and hence

ρ(x, t)
Dvi
Dt

(x, t) = ρ(x, t)bi(x, t) +
∂

∂xj
Tij(x, t), ∀x ∈ Ωt



or, equivalently,

ρ

(
∂vi
∂t

+ vk
∂

∂xk
vi

)
= ρbi +

∂

∂xj
Tij . (4.13)

From balance of Angular momentum (4.16) and (4.9) it follows that

∫
B̃t

x×
[
Dv

Dt
− b

]
ρdvx =

∫
∂B̃t

εijkxj(Tklnl)︷ ︸︸ ︷
x× (Tn) dAx.

Hence, by the divergence theorem,

∫
∂B̃t

∂

∂xl
(εijkxjTkl)− εijkxj

[
Dvk
Dt
− bk

]
ρ dVx = 0

⇐⇒
∫
∂B̃t

εijkxj

[
−ρDvk

Dt
+ ρbk +

∂

∂xl
Tkl

]
︸ ︷︷ ︸

=0 by linear momentum equations (4.13)

+ εilkTkl = 0

Hence, ∫
∂B̃t

εilkTkl dVx = 0, ∀ B̃t ⊂ Ωt

By the localisation theorem 3.1, εilkTkl = 0 in Ωt. Hence

0 = εimnεilkTkl = [δmlδnk − δmkδln]Tkl

= Tnm − Tmn ⇒ Tnm = Tmn. (4.14)

and the Cauchy stress tensor is symmetric.

In summary we have, by (4.13), (4.14), (4.2), the following equations of motion:

Linear Momentum Balance: ρ
Dvi
Dt

= ρbi +
∂Tij
∂xj

(4.15)

Angular Momentum Balance: Tij = Tji (4.16)

Mass Balance:
Dρ

Dt
+ ρ(O · v) = 0 ⇐⇒ ∂ρ

∂t
+ O · (vρ) = 0 (4.17)

Solving the equations

The derived equations are valid for any continuum. In order to solve for a particular
continuum, we require constitutive relations relating Tij to other variables e.g. Tij = Tij
(x, ρ,v, ∂φi∂Xα

, ...). The particular form will depend on the material (however symmetric
of Tij is necessary). Any particular problem also requires the specification of boundary
conditions, typically we specify the velocity or displacement or traction (or a combination).



Examples

1. For an inviscid (ideal) fluid Tij = −Pδij where P = P (x, t) is the pressure, so
∂
∂xj

Tij = − ∂P
∂xj

yielding the Euler equations

ρ
Dvi
Dt

= ρbi −
∂P

∂xi
(4.18)

The incompressibility condition becomes

O · v =
∂vi
∂xi

= 0. (4.19)

A typical boundary condition in solving the Euler equations is the “no normal flow”
condition that v.n = 0 at a rigid boundary.

2. For an compressible fluid Tij = −Pδij where P = Π(ρ) is the pressure, where Π is
the pressure as a function of density, typically with Π′ > 0 (pressure increases with
density)

3. Equations of motion for an incompressible Newtonian (viscous) fluid: here we assume
that

Tij = −Pδij + 2µSij , (4.20)

where Sij = 1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
are the components of the rate of stretch tensor, and µ

is called the viscosity5 (the kinematic viscosity is ν = µ
ρ ). Hence,

∂

∂xj
Tij = − ∂P

∂xi
+ µ

∂

∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
= − ∂P

∂xi
+ µ

(
∂2vi

∂xj∂xj
+

∂

∂xi

(
∂vj
∂xj

))
= − ∂P

∂xi
+ µ∆vi

With this form for the stress tensor, the equations of motion are

ρ
Dvi
Dt

= − ∂P
∂xi

+ µ∆vi + ρbi

together with the incompressibility condition

O · v =
∂vi
∂xi

= 0

which is the mass balance condition. This system is known as the Navier-Stokes Equations.

A typical boundary condition imposed when solving this system is the “no slip” boundary
condition that v = 0 at a rigid boundary.

Remark 4.4. Recall that for an incompressible fluid O ·v = 0 since all admissible motions
satisfy det(Dφ(x, t)) = 1. In this case ρ(x, t)|x=φ(X,t) = ρ0(X)

1 and so the continuity/mass
balance equation (4.17) is automatically satisfied. In this course we work mainly with
incompressible fluids so motions satisfy det(Dφ(X, t)) ≡ 1.

For all admissible motions ∂vi
∂xi

(x, t) = 0 ⇐⇒ ρ(φ(X, t), t) = ρ0(X) and we usually take
ρ0(X) = constant = ρ0 (uniform density). (See sheet 3 Q3.)

5The coefficient µ is the viscosity which dimensionally has the units of stress × time (e.g. Pascals ×
Seconds, 1Pascal = 1N

m2 ).



Note: for conservative body forces (e.g., gravity) ρbi = ∂ψ
∂xi

and the force term can be

absorbed into the pressure term by modifying it to P̃ = P − ψ.

Definition 4.5. For fluids, a flow is steady if ∂
∂tv(x, t) = 0. In this case, the equations

of linear momentum balance (4.15) are

ρ

(
vk

∂

∂xk

)
vi = −ρbi +

∂Tij
∂xj

.

Definition 4.6. A continuum is in equilibrium if v = 0.

In this case, the equations of linear momentum balance (4.15) yield

ρbi +
∂

∂xj
Tij = 0.

Remark 4.7. The force exerted by a continuum on a body B contained within it (e.g, a
body immersed in a fluid) can be determined by integrating the Cauchy stress vector over
the boundary of the body. Hence, this force is given by∫

∂B
t dA =

∫
∂B

Tn dA.

5 Properties of solutions of the Euler Equations

The main example of a continuum theory which we study in this course will be the Euler
equations for flow of an incompressible, ideal fluid:

ρ0

(
∂v

∂t
+ (v · ∇)v

)
= −∇P + ρ0F . (5.1)

We assume that the body force is conservative so that F = ∇ψ. The conservation of mass
equation (3.4) then reduces to the incompressibility condition

∇ · v = 0 in Ω. (5.2)

Recall the important concept in the study of fluid flows of the vorticity ω(x, t) = (ωi(x, t)),
defined by

ω = ∇× v. (5.3)

This is a measure of the rotation inherent in the flow. We say that the flow is irrotational
if the vorticity (5.3) is identically zero.

5.1 Bernoulli’s Theorem

Theorem 5.1. Let v = v(x) be a steady solution of the incompressible Euler equations
and let the body force satisfy b = ∇χ. Then

H =

(
P

ρ0
+ χ+

1

2
|v|2

)
is constant along streamlines of the flow.




